

Available online at www.sciencedirect.com

Molecular Phylogenetics and Evolution 31 (2004) 16-30

MOLECULAR PHYLOGENETICS AND EVOLUTION

www.elsevier.com/locate/ympev

Phylogenetic relationships among early-diverging eudicots based on four genes: were the eudicots ancestrally woody?

Sangtae Kim,^{a,*} Douglas E. Soltis,^{b,*} Pamela S. Soltis,^c Michael J. Zanis,^d and Youngbae Suh^e

^a Department of Botany, University of Florida, Gainesville, FL 32611, USA

^b Department of Botany and the Genetics Institute, University of Florida, Gainesville, FL 32611, USA

^c Florida Museum of Natural History and the Genetics Institute, University of Florida, Gainesville, FL 32611, USA

^d School of Biological Sciences, Washington State University, Pullman, WA 99164, USA

^e Natural Products Research Institute, Seoul National University, Seoul 110-460, Republic of Korea

Received 24 October 2002; revised 23 July 2003

Abstract

Based on analyses of combined data sets of three genes (18S rDNA, *rbcL*, and *atpB*), phylogenetic relationships among the earlydiverging eudicot lineages (Ranunculales, Proteales, Trochodendraceae, Sabiaceae, and Buxaceae) remain unclear, as are relationships within Ranunculales, especially the placement of Eupteleaceae. To clarify relationships among these early-diverging eudicot lineages, we added entire sequences of 26S rDNA to the existing three-gene data set. In the combined analyses of four genes based on parsimony, ML, and Bayesian analysis, Ranunculales are strongly supported as a clade and are sister to other eudicots. Proteales appear as sister to the remaining eudicots, which are weakly (59%) supported as a clade. Relationships among Trochodendraceae, Buxaceae (including *Didymeles*), Sabiaceae, and Proteales remain unclear. Within Ranunculales, Eupteleaceae are sister to all other Ranunculales, with bootstrap support of 70% in parsimony analysis and with posterior probability of 1.00 in Bayesian analysis. Our character reconstructions indicate that the woody habit is ancestral, not only for the basal angiosperms, but also for the eudicots. Furthermore, Ranunculales may not be ancestrally herbaceous, as long maintained. The woody habit appears to have been ancestral for several major clades of eudicots, including Caryophyllales, and asterids. © 2003 Elsevier Inc. All rights reserved.

Keywords: 26S rDNA; Early-diverging eudicots; Euptelea; Ranunculales; Woodiness

1. Introduction

Recent molecular phylogenetic studies of angiosperms have consistently recognized the eudicot clade, members of which have triaperturate or triaperturatederived pollen as a morphological synapomorphy (e.g., Albert et al., 1998; Chase et al., 1993; Drinnan et al., 1994; Hoot et al., 1999; Soltis et al., 1997, 2000; Soltis et al., 1999). The eudicots contain 75% of all angiosperm species (Drinnan et al., 1994; Mabberley, 1987; Magallón et al., 1999). In the eudicot clade, the early-diverging, or basal, eudicots, i.e., Ranunculales, Proteales, Sabiaceae, Trochodendraceae, and Buxaceae, are followed by a well-supported clade of core eudicots, consisting of the asterids, rosids, Caryophyllales, Gunnerales, Berberidopsidales (Berberidopsidaceae/Aextoxicaceae), Santalales, and Saxifragales.

In a previous multi-gene study, Hoot et al. (1999) analyzed 73 taxa including early-diverging eudicots, basal angiosperm outgroups, and placeholders for core eudicots using two chloroplast genes (*rbcL* and *atpB*) and the nuclear 18S rDNA (Fig. 1A). They found that Ranunculales were sister to all other eudicots; Proteales (including Platanaceae and Nelumbonaceae), Sabiaceae, Buxaceae (including *Didymeles*), and Trochodendraceae (including *Tetracentron*) were then successive sister groups to the core eudicots. However, most of these relationships did not receive bootstrap support >50%.

^{*} Corresponding authors. Fax: 1-352-846-2154.

E-mail addresses: sangtae@botany.ufl.edu (S. Kim), dsoltis@botany. ufl.edu (D.E. Soltis).

^{1055-7903/\$ -} see front matter \odot 2003 Elsevier Inc. All rights reserved. doi:10.1016/j.ympev.2003.07.017

Fig. 1. Summary trees based on previous molecular phylogenetic studies of early-diverging eudicots. (A) Strict consensus tree from Hoot et al. (1999). (B) Jackknife consensus tree from Soltis et al. (2000). Bold lines indicate clades receiving support >70%.

Within Ranunculales, they found Papaveraceae to be sister to Eupteleaceae + a strongly supported core Ranunculales (Berberidaceae, Circaeasteraceae, Lardizabalaceae, Menispermaceae, and Ranunculaceae). However, bootstrap support of this sister group relationship was >50%.

Soltis et al. (2000) expanded the taxon sampling substantially in an analysis of three-genes (*rbcL*, *atpB*, and 18S rDNA) for 560 angiosperm species. In that study, the relationships among early-diverging eudicots were consistent with those of Hoot et al. (1999), despite of somewhat different taxon sampling (Fig. 1B). Although previous studies (Hoot et al., 1999; Soltis et al., 2000) provided insights into relationships among some groups of early-diverging eudicots, many problems still remain in our understanding of phylogenetic relationships among these plants. Importantly, reconstructing patterns of character evolution in the eudicots as a whole requires resolution of relationships among earlydiverging eudicots.

The 18S ribosomal RNA gene has been the most widely used nuclear sequence for phylogeny reconstruction at higher taxonomic levels in plants (e.g., Chaw et al., 1997; Hamby and Zimmer, 1992; Soltis et al., 1997). However, 18S rDNA data alone may provide too few phylogenetically informative characters to resolve relationships adequately, even among families of angiosperms (Soltis and Soltis, 1998). Kuzoff et al. (1998) demonstrated the potential of entire 26S rDNA sequences for phylogeny reconstruction at taxonomic levels comparable to those investigated with 18S rDNA. They provided a protocol for PCR amplification and sequencing of entire (\sim 3.4 kb) 26S rDNA sequences as single amplicons and primers that can be used for amplification and sequencing. 26S rDNA evolves 1.6–2.2 times faster than and provides 3.3 times as many parsimony-informative characters as 18S rDNA, and the expansion segments of 26S rDNA evolve 1.2 to 3.0 times faster than *rbcL*, providing 1.5 times the number of informative characters (Kuzoff et al., 1998). The phylogenetic utility of 26S rDNA sequences in angiosperms has been further demonstrated by several recent studies (e.g., Fan and Xiang, 2001; Fishbein et al., 2001; Zanis et al., 2002, 2003).

Phylogenetic analyses have revealed that Ranunculales not only form a well-supported clade (with the addition of the woody family Eupteleaceae, traditionally placed in Hamamelidae), but also they occupy a pivotal phylogenetic position as sister to all other eudicots (Hoot et al., 1999; Soltis et al., 2000). There has been considerable debate concerning the primitive or ancestral habit in the angiosperms, woody vs. herbaceous. Authors of modern classifications (e.g., Cronquist, 1981; Takhtajan, 1997) favored a woody ancestral condition. However, early cladistic analyses placed herbaceous taxa (e.g., Chloranthaceae) as sister to all other angiosperms (Donoghue and Doyle, 1989). Early molecular studies similarly placed herbaceous taxa (e.g., Nymphaeaceae or Ceratophyllaceae) as sister to other angiosperms (e.g., Chase et al., 1993; Doyle et al., 1994), whereas recent analyses have converged on Amborella (woody) followed by Nymphaeaceae (herbaceous) as subsequent sisters to all other angiosperms (see Hilu et al., in press; Kim et al., submitted; Zanis et al., 2002, 2003). However, some of the earliest fossil angiosperms are herbaceous aquatics, including *Archaefructus* (Friis et al., 2001; Sun et al., 2002). Character reconstructions generally show the ancestral condition for angiosperms to be ambiguous (Zanis et al., 2003). Within the eudicots, however, Ranunculales are primarily herbaceous, leading to Cronquist's (1968) characterization of them as "the herbaceous equivalent of the Magnoliales." The position of Ranunculales as sister to all other eudicots, raises the possibility that the eudicots might be ancestrally herbaceous.

In this paper, we present the results of phylogenetic analyses of early-diverging eudicots based on combined sequences for four genes, *rbcL*, *atpB*, 18S rDNA, and 26S rDNA. Our goal was to clarify relationships among the early-diverging eudicots in general, and within Ranunculales in particular. Elucidation of phylogenetic relationships among clades of early-diverging eudicots provides the opportunity to assess character evolution. We reconstructed the evolution of one important trait, the woody habit.

2. Materials and methods

2.1. Taxon sampling

Fifty-three taxa representing the major lineages of early-diverging (29 taxa) and core eudicots (24 taxa), plus seven basal angiosperm outgroups (one representative each of Magnoliaceae, Himantandraceae, Winteraceae, Chloranthaceae, Aristolochiaceae, Nymphaeaceae, and Amborellaceae) were included in this study. All early-diverging eudicot lineages were represented: Buxaceae, Sabiaceae, Trochodendraceae, all three families of Proteales (Proteaceae, Platanaceae, and Nelumbonaceae), and all seven families of Ranunculales (Lardizabalaceae, Circaeasteraceae, Menispermaceae, Berberidaceae, Ranunculaceae, Papaveraceae, and Eupteleaceae). Outgroup taxa and placeholders for core eudicots were chosen from the three-gene analysis of angiosperms (Soltis et al., 1999, 2000) and the APG (1998; APG II, 2003) classifications (Table 1). Sequences of *rbcL*, *atpB*, and 18S rDNA were reported previously (Hoot et al., 1999; Soltis et al., 2000), as were some of the 26S rDNA sequences (Fishbein et al., 2001; Kuzoff et al., 1998; Zanis et al., 2003). We generated 26S rDNA sequences for 38 taxa (Table 1). Whenever possible, 26S rDNA was sequenced from the same DNA sample used in previous studies (e.g., Hoot et al., 1999; Soltis et al., 2000). However, in a few cases, we used DNA from another species of the same genus, or another genus of the same family as a placeholder (Table 1). Instances in which a different genus was used are: Jepsonia for 26S

rDNA, *Boykinia* for three-gene; *Fragaria* for 26S rDNA, *Kerria* for three-gene; and *Lambertia* for 26S rDNA, *Placospermun* for three-gene. We followed the APG II (2003) treatment for familial and ordinal circumscriptions and names.

2.2. Molecular methods

For most taxa, 26S rDNA was amplified as two fragments from total DNA extracts. The PCR primers used were: N-nc26S1 (forward) and 1839rev (reverse), and N-nc26S7 (forward) and 3331rev (reverse), respectively (Kuzoff et al., 1998). Methods of amplification and sequencing followed Kuzoff et al. (1998). Automated sequencing of purified PCR products was conducted on an ABI 377 Automated Sequencer (Applied Biosystems, Foster City, CA). A subset of the primers used by Kuzoff et al. (1998) was sufficient to obtain complete 26S rDNA sequences in most cases: N-nc26S1, N-nc26S3, N-nc26S5, N-nc26S7, N-nc26S9, N-nc26S11, N-nc26S13, 268rev, 641rev, 950rev, 1229rev, 1449rev, 1839rev, 2426rev, 2782rev, and 3331rev. However, for Buxus sempervirens L. (Buxaceae) and Viscum album L. (Santalaceae), we were unable to obtain approximately 100 and 280 bp, respectively, of the 26S rDNA region. These areas were coded as missing characters. Proofreading and editing of each sequence were performed using Sequencher version 3.0 (Gene Codes, Ann Arbor, Michigan, USA). Sequences were aligned using CLUS-TAL X (Thompson et al., 1997), and then adjusted by eye.

2.3. Phylogenetic analyses

Phylogenetic analyses were performed separately on the individual rbcL, atpB, 18S rDNA, and 26S rDNA data sets as well as on several combined data sets: rbcL + atpB (chloroplast genes), 18S rDNA + 26S rDNA (nuclear genes), and rbcL + atpB + 18SrDNA + 26S rDNA (total evidence). To ascertain the impact of the addition of 26S rDNA sequences and to facilitate direct comparison with the three-gene eudicot analysis of Hoot et al. (1999), we also examined a parallel three-gene data set (rbcL/atpB/18S rDNA) of identical taxon composition to the four-gene data set, but from which the 26S rDNA sequences were removed.

Data incongruence among the four genes was explored using the partition homogeneity test (=incongruence length difference test of Farris et al., 1995) implemented in PAUP* 4.0b10 (Swofford, 1998). This test employed 100 replicates, each with 10 random addition replicates using NNI branch swapping and saving a maximum of 5000 trees per replicate.

All parsimony analyses were performed using PAUP* 4.0b10 (Swofford, 1998) using the following

Table 1

Species analyzed in this study. Species are arranged by families and higher groups according to the APG II (2003) system

Family	Species	GenBank Accession Number					
		26S rDNA/voucher information	atpB	rbcL	18S rDNA		
Amborellaceae	Amborella trichopoda Baill.	AF479238	AJ235389	L12628	U42497		
Chloranthaceae	Chloranthus japonicus Siebold	AF479245	AJ235431	L12640			
	Chloranthus multistachys S. J. Pei				AF206885		
Nymphaeaceae	Cabomba caroliniana A. Gray	AF479239	AF209549	M77027	AF206878		
Canellales							
Winteraceae	Drimys winteri J. R. Foster & G. Foster	AF036491	AF093425	L01905	U42823		
Magnoliales							
Himantandraceae	Galbulimima belgraveana Sprague	AF389251/Qiu 90034 NCU	AJ235478	L12646	AF206916		
Magnoliaceae	Magnolia denudata Desr.	AF389256/S. Kim 1010 NPRI					
-	Magnolia tripetala L.		AJ235526	AJ131927	AF206956		
Piperales							
Aristolochiaceae	Aristolochia macrophylla Lam.	AY095450	AJ235399	L12630	AF206855		
EUDICOTS							
Buxaceae	Buxus sempervirens L.	AF389243/Chase 203 NCU	AF092110	AF093717	L54065		
	Pachysandra procumbens Michx.	AF389244/Chase 207 NCU	AF092111	AF093718	AF094533		
	Didymeles perrieri Leandri	AF389247/Andrianantoanina 387 MO	AF092119	AF061994	AF094541		
Sabiaceae	Meliosma vetichiorum Hemsl.	AF389271/Chase 2989 K	AF209629	AF206793	AF206951		
	Sabia swinhoei Hemsl. ex F. B. Forbes & Hemsl.	AF389272/Wagner 6518 HAST	AF093395		L75840		
	Sabia sp.	C C		L12662			
Trochodendraceae	Tetracentron sinensis Oliv.	AF274670	AF093422	L12668	U42814		
	Trochodendron aralioides Siebold & Zucc.	AF274671	AF093423	L01958	U42816		
Proteales							
Nelumbonaceae	Nelumbo lutea (Willd.) Pers.	AF389259/Hoot 9212 UWM	AF093387	M77032	L75835		
Platanaceae	Platanus occidentalis L.	AF274662	U86386	L01943	U42794		
Proteaceae	Roupala macrophylla Pohl	AF389265/Douglas 131 MEL	AF060416	AF093728	AF094559		
	Lambertia inermis R. Br.	AF274652					
	Placospermum coriaceum C. T. White & W. D. Francis		AF060391	AF093729	L75837		
Ranunculales							
Berberidaceae	Caulophyllum thalictroides (L.) Michx.	AF389240/Hoot 925 UWM	AF092108	L08760	L54064		
	Nandina domestica Thunb.	AF389241/Hoot 922 UWM	L37930	L37920	L37911		
Circaeasteraceae	Circaeaster agrestis Maxim.	AF389246/Chase 506 K	AF092116	AF093720	AF094538		
	Kingdonia uniflora Balf. f. & W. W. Sm.	AF389245/Qiu s.n. PE	AF092115	AF093719	AF094537		
Eupteleaceae	Euptelea polyandra Siebold & Zucc.	AF389249/Qiu 90026 NCU	U86384	L12645	L75831		
Lardizabalaceae	Akebia quinata (Houtt.) Decne.	AF389253/Qiu 91020 NCU	L37924	L12627	L31795		
	Decaisnea fargesii Franch.	AF389254/Reznicek 9236 MICH	L37926	L37916	L37907		
	Sinofranchetia chinensis Helmsl.	AF389255/Edinburgh 831635 F	L37931	L37921	L37912		
Menispermaceae	Menispermum canadense L.	AF389257/Soltis & Soltis 2526 WS	AF093384	AF093726	L75834		
-	Tinospora caffra Miers	AF389258/Jaarsveld 2131 NBG	L37933	L37923	L37914		
Papaveraceae	Dicentra eximia Torrey	AF389262/Reznicek 9756 MICH			L37908		
*	Dicentra chrysantha Walp.		AJ235454				
	Dicentra spectabilis (L.) Lem.			L08761			
	Hypecoum imberbe Sm.	AF389263/Chase 528 K	U86398	U86628	L75836		
	Pteridophyllum racemosum Siebold & Zucc.	AF389264/Chase 531 K	U86400	U86631	AF094560		
Ranunculaceae	Coptis trifolia (L.) Salisb.	AF389266/Voss & Howard s.n. MICH	AF093393	AF093730	L75838		
	Glaucidium palmatum Siebold & Zucc.	AF389267/Hoot 924 UWM	AF093375	AF093723	L75829		
	Hydrastis canadense L	AF389268/Naczi 2883 MICH	AE093382	L75849	L75828		

19

Table I (con	tinued)
--------------	---------

tole I (commuca)								
Family	Species	GenBank Accession Number						
		26S rDNA/voucher information	atpB	rbcL	18S rDNA			
	Ranunculus keniensis Milne-Redhead & Turrill	AF389269/Chase 573 K						
	Ranunculus sp.							
	Ranunculus sardous Crantz				L24092			
	Ranunculus trichophyllus Chaix			L08766				
	Xanthorhiza simplicissima Marshall	AF389270/Qiu 91030 NCU	AF093394	L12669	L75839			
CORE EUDICOTS	•	-						
Aextoxicaceae	Aextoxicon punctatum Ruiz & Pav.	AF389239/Chase 959 K	AJ235384	X83986	AF206839			
Berberidopsidaceae	Berberidopsis corallina Hook.	AF389242/Chase 555 K	AJ235409	AJ235773	AF206866			
Gunnerales	*							
Gunneraceae	Gunnera manicata Linden	AF389250/Kurcheberg s.n. WTU		L11186	U43787			
	Gunnera hamiltonii Kirk. ex W. S. Ham.	Ŭ	AF093374					
Caryophyllales								
Droseraceae	Drosera capensis L.	AF389248/Chase 2582 K			U42532			
	Drosera communis A. StHil.		AJ235459					
	Drosera spathulata Labill.			L19530				
Nepentheaceae	Nepenthes sp	AF389260 /Nickerent 3056 SIU			U42787			
Tepenneueeue	Nepenthes alata Blanco		A J235542	L01936	0.12707			
Plumbaginaceae	<i>Plumbago auriculata</i> Lam	AF036492			U42795			
Tumoughueeue	Plumbago capensis Thunb			M77701	0.2//0			
	Phumbago zevlanica L		A 1235565	111///01				
Santalales	Tumbugo Leynanica E.		110200000					
Olacaceae	Schoenfig schreberi I E Gmel	AF389761/Nickrant 2500 II I	A E209671	L 11205	ΔE207017			
Santalaceae	Eubrachion ambiguum	AF307201/Well 2577 122	AF200583	L 26071	I 24141			
Santalaccae	(Hook & Arnott) Engl	AF309275 Nickront 2600 SIII	AI 209303	L20071	L24141			
	Ogwig Igneeolata Hochet & Stoud	A E 280774/Nielevent 2721 SIII	A E 200641	I 11106	1142802			
	Viscum album I	AF309274/Nickrent 2751 SIU	AF209041 AF200605	L 26078	U42803			
Savifragalas	Viscum album E.	AF367275/Wickfent 2255 510	AI 209093	L20078	042021			
Caraidinhyllaaaaa	Consider hulling improving Sichold & Zugo	A E 274620	A E002112	I 11672	1142510			
Hamamalida aaaa	- Uzwawalia winawing I	AF2/4039	AF092112	L110/5	042318 A E004551			
Hamamendaceae	Hamametis virginiana L.	AF030493	AF095560	1.01022	AF094551			
S	Hamametis motifs Oliv.			L01922	1142906			
Saxiiragaceae	Boykinia intermedia (Piper) G. N. Jones		4 1005417	1 11175	042806			
	Boykinia rotunaifolia Parry ex A. Gray	1 0026407	AJ235417	LIII/5				
	<i>Jepsonia parryi</i> Small	AF036497	1 5200700	110(21(1140011			
DOGUDO	Saxifraga mertensiana Bong.	AF036498	AF209669	U06216	042811			
RUSIDS		1 5054650	1 100 5 500	1 100 5500	1			
Vitaceae	Leea guineensis G.Don	AF2/4653	AJ235520	AJ235/83	AF206951			
EUROSIDS I								
Celastrales								
Parnassiaceae	Parnassia fimbriata Banks	AF036496		L01939	U42809			
	Parnassia palustris L.		AJ235552					
Oxalidales								
Cunoniaceae	Eucryphia lucida Druce	AF036494	AF209584	L01918	U4253			
Rosales								
Rosaceae	Fragaria X ananassa Duchesne	X58118						
	Kerria japonica (Thunb.) DC.		AF132886	AF132893	AF132890			

					X17062		U38312					U42782		U42804			AJ230617			U42502		analyse.
				M88342					AJ238407			L11198		L01952			L14403				L13647	vined in multi-gene
			AF209545						AJ238408			AJ236231		AJ235594			AJ236183			AJ236197		brackets are comb
		D10840						X05910				AF389252/Soltis & Soltis 2411 WS		AF389276/Morgan s.n. WS			X13557			AF036489		. Sequences of species designated within
		FBrassica napus L.	Brassica balearica Pers.	Brassica oleracea L.	Brassica hirta Moench		Citrus aurantium L.	Citrus limon (L.) Burm.f.	Citrus paradisi Macfad.			Philadelphus lewisii Pursh		[Sarracenia purpurea L. [Sarracenia flava L.	2		Lycopersicon esculentum Mill.			F Tragopogon dubius Scop.	Tragopogon porrifolius L.	ccession numbers are for 26S rDNA determined in this study.
EUROSIDS II	Brassicales	Brassicaceae				Sapindales	Rutaceae			ASTERIDS	Cornales	Hydrangeaceae	Ericales	Sarraceniaceae	EUASTERIDS I	Solanales	Solanaceae	EUASTERIDS II	Asterales	Asteraceae		Note. Bold-faced GenBank a

method. We first performed 200 random addition replicates with TBR branch swapping saving no more than 10 trees per replicate; we saved optimal trees from each replicate, even if they were not optimal over all replicates. We then used all of these trees (68 trees, scores ranging from 10,910 to 10,916) as starting trees for further analysis with TBR branch swapping and saving all trees. To assess support for each node, bootstrap analyses (Felsenstein, 1985) were performed using 500 replicate heuristic searches with 10 random taxon addition replicates and the TBR branch-swapping option. We saved a maximum of 5000 trees per bootstrap replicate.

For the combined analysis of four genes, Maximum likelihood (ML) analysis and Bayesian analysis (Huelsenbeck, 2000) were also performed. For the ML analysis, the program MODELTEST (Posada and Crandall, 1998) was used to determine the appropriate model of sequence evolution for this data set. The chosen model $(GTR + I + \Gamma)$ was applied to the data matrix using PAUP* 4.0b10 (Swofford, 1998). The ML analysis was conducted using parameter values suggested in MOD-ELTEST $(-\ln L = 64642.40; A:C:G:T = 0.26: 0.22)$:0.27:0.25; P inv = 0.52; Shape = 0.54) and the three most parsimonious trees as starting trees in a heuristic search with TBR branch swapping.

Bayesian analysis was performed using MrBayes 2.01 (Huelsenbeck, 2000). We ran four chains of Markov Chain Monte Carlo (MCMC), sampling every 1000 generations for 1,000,000 generations, starting with a random tree. Stationarity was reached at approximately generation 40,000; thus, the first 40 trees were the "burn in" of the chain, and phylogenetic inferences are based on those trees sampled after generation 40,000.

2.4. Character-state reconstruction

The placement of Eupteleaceae obtained here (see below) has implications for the reconstruction of character evolution. Earlier reconstructions in early-diverging eudicots analyses have focused on floral features, including merosity (e.g., Albert et al., 1998; Zanis et al., 2003). We focused on a character of critical evolutionary importance that has not been recently evaluated in light of a phylogeny for basal eudicots. We examined the evolution of habit (woody vs. herbaceous) in the early diversification of the eudicots using MacClade version 3.04 (Maddison and Maddison, 1992). We scored habit as either herbaceous or woody, using data from the literature (e.g., Cronquist, 1981; Doyle and Endress, 2000). We reconstructed habit for basal, or early-diverging eudicots and also for the major clades of core eudicots (asterids, rosids, Caryophyllales + Dilleniaceae, and Saxifragales) using current topologies (e.g., Albach et al., 2001; Bremer et al., 2002; Fishbein et al., 2001; Soltis et al., 2000).

We constructed a summary topology for angiosperms based on our results and recently published topologies for basal angiosperms (Zanis et al., 2002, 2003) and core eudicots (Soltis et al., 2003). For early-diverging eudicots, we followed the strict consensus tree obtained in the present study. The sampling of early-diverging angiosperms was expanded from seven genera to 18 genera; the topology in our reconstruction is adapted from Zanis et al. (2002). Caryophyllales, Santalales, asterids, rosids, and Saxifragales were depicted as a polytomy following Hoot et al. (1999) and Soltis et al. (2000). Soltis et al. (2003) placed Gunnerales as sister to all other core eudicots, which we follow here. We first used the all most parsimonious states optimization in MacClade because the accelerated transformation (ACCTRAN) and the delayed transformation (DEL-TRAN) optimizations cannot be applied when a polytomy is present. We also explored the impact of alternative topologies on character-state reconstruction. For example, the strict consensus of the shortest trees from Soltis et al. (2000) resolves the relationships among the core eudicots, allowing use of ACCTRAN and DELTRAN optimizations. We also experimented with several different relationships among core eudicot lineages (this had no impact on the reconstruction). In addition to the analysis with Eupteleaceae followed by Papaveraceae as sister to other Ranunculales (see below), we also explored the alternative of Papaveraceae followed by Eupteleaceae as successive sister groups to other Ranunculales because previous three-gene studies (Hoot et al., 1999; Soltis et al., 2000) placed Papaveraceae as a sister to other Ranunculales.

3. Results and discussion

3.1. 26S rDNA sequence analysis

Several small gaps were needed to align the 26S rDNA sequences. The aligned sequences were 3480

Table 2

manison of motion for the verieus data sets

nucleotides in length. We excluded 81 sites from our phylogenetic analyses. These excluded sites include five regions located in expansion segments that were difficult to align, as well as sites located near the 5' and 3' ends of the gene. Of the 3399 aligned sites included in the phylogenetic analyses, 1117 were variable, and 699 were potentially parsimony-informative. The number of potentially parsimony-informative sites in 26S rDNA alone (699) was approximately 70% of the total from the three-gene (*rbcL*, *atpB*, and 18S rDNA) data set (1007) (Table 2).

Partition homogeneity tests between 26S rDNA vs. 18S rDNA, 18S rDNA vs. rbcL, 18S rDNA vs. atpB, rbcL vs. atpB, and 18S rDNA vs. 26S rDNA/ *rbcL* atpB showed congruence (P > 0.05). However, the 26S rDNA data set was not congruent with the atpB data set alone or with the combined 18S rDNA/ *rbcL atpB* data set (P < 0.05; Table 3). These results demonstrate that 26S rDNA sequences possess different phylogenetic information compared with other data.

The results of the partition homogeneity test indicate there is some heterogeneity among the data partitions. It is not unusual to detect significant heterogeneity among

Table 3

P values from partition-homogeneity test, with 100 random-addition replications with NNI branch swapping

Data sets	P value
26S rDNA vs. 18S rDNA	0.25
26S rDNA vs. rbcL	0.01
26S rDNA vs. atpB	0.05
18S rDNA vs. rbcL	0.08
18S rDNA vs. <i>atpB</i>	0.13
rbcL rDNA vs. $atpB$	0.12
26S rDNA vs. 18S rDNA/rbcL atpB	0.01
18S rDNA vs. 26S rDNA/rbcL atpB	0.78
rbcL vs. 26S rDNA/18S rDNA/atpB	0.05
atpB vs. 26S rDNA/18S rDNA/rbcL	0.02
Chloroplast vs. nuclear	0.01

Data set	Total length	No. variable char.	No. informative char.	No. of trees	Length of trees	CI	RI	RC
rbcL	1396	632	425	110	2490	0.38	0.44	0.17
atpB	1414	574	393	941	2130	0.40	0.50	0.20
d 18S rDNA	1723	363	189	756	1067	0.43	0.46	0.20
id 26S rDNA	3399	1117	699	10	5079	0.33	0.41	0.14
chloroplast $(rbcL + atpB)$	2810	1206	818	12	4648	0.39	0.47	0.18
nuclear (26S rDNA+ 18SrDNA)	5123	1480	888	2	6527	0.33	0.36	0.12
Three gene ($rbcL$ + $atpB$ + 26S rDNA)	4533	1569	1007	2	5756	0.39	0.50	0.18
Four gene	7933	2686	1706	3	10,910	0.36	0.43	0.16

Note. Consistency index (CI) excludes uninformative characters. RI = retention index, RC = rescaled consistency index.

data partitions using a P values of 0.05. Some authors have indicated that the partition homogeneity test is extremely conservative (Cunningham, 1997; Sullivian, 1996). Furthermore, this is not a measure of combinability. Data sets with slight heterogeneity can be readily combined as is the case here.

Parsimony analysis of the 26S rDNA data set generated 10 shortest trees each of 5079 steps (CI = 0.33, RI = 0.41). The strict consensus tree showed some differences compared with the topology reported in previous three-gene studies (Fig. 2; Hoot et al., 1999; Soltis et al., 2000). However, few of these differences received bootstrap support >50% in either tree. This result is similar to those of other comparisons of *rbcL*, *atpB*, and 18S rDNA data sets. It seems that each individual data set alone is insufficient for recognizing relationships among early-diverging eudicots. The eudicot clade received 88% bootstrap support in the 26S rDNA analysis, but the core eudicot clade did not receive support >50%. Both clades received support close to 100% in previous studies based on combined *rbcL*, *atpB*, and 18S rDNA data sets (Hoot et al., 1999; Soltis et al., 2000). Many early-diverging eudicot families were well supported: Sabiaceae, Trochodendraceae, Proteaceae, Berberidaceae, Circaeasteraceae, Lardizabalaceae, and Menispermaceae. Ranunculales, although weakly supported (53%), appeared as sister to all remaining eudicots in the strict consensus tree. Within Ranunculales,

Fig. 2. One of 10 equally parsimonious trees from analysis of 26S rDNA sequences. Numbers above the branches indicate the number of nucleotide changes supporting each branch. Numbers below the branches are bootstrap percentages. Dotted lines indicate branches that collapse in the strict consensus tree. Bold lines indicate clades receiving support >70%.

Eupteleaceae are sister to the rest of the clade, although support for this sister-group relationship is low (54%). Bootstrap values for many clades within Ranunculales are >50% with 26S rDNA sequences alone.

3.2. Three-gene analysis

We conducted a three-gene analysis to determine whether our four-gene results (e.g., *Euptelea* as sister to other Ranunculales) were simply the result of the different taxon composition of our data set compared to earlier three-gene analyses (Hoot et al., 1999; Soltis et al., 2000, 2003). Two equally parsimonious trees each of 5756 steps were generated from the analysis of a combined data set of *rbcL*, *atpB*, and 18S rDNA. The only difference between this analysis and those of Hoot et al. (1999) and Soltis et al. (2000) was taxon sampling in the core eudicots and the choice of outgroup. Taxa not common to both studies were eliminated from the trees to facilitate direct comparison (Fig. 3A). Most relationships were similar. Some moderately to well-supported clades (>70%), such as eudicots, core eudicots, Ranunculales, and core eudicots + Trocho-dendraceae/Buxaceae, were recognized in both analyses. Our three-gene analysis also placed Papaveraceae as sister to other Ranunculales, as in Hoot et al. (1999) and Soltis et al. (2000). In the topologies of Hoot et al. (1999) and Soltis et al. (2000), the core eudicots, Tro-

Fig. 3. Comparison of strict consensus trees from various analyses. Unshared taxa between two studies were eliminated in (A). Bold lines indicate clades supported by bootstrap values >70%.

chodendraceae, Buxaceae, Sabiaceae, Proteales, and Ranunculales form a grade. However, our three-gene analysis placed Sabiaceae as sister to Proteales and placed *Didymeles* as sister to Trochodendraceae + Buxaceae s. s. (i.e., the broadly defined Buxaceae of APG II is paraphyletic in this instance) (Fig. 3A). These unstable relationships demonstrate that relationships among early-diverging eudicots are still unclear (Hoot et al., 1999; Soltis et al., 2000).

3.3. Four-gene analysis

The number of trees obtained in the parsimony analysis of the four-gene data set was much lower than the number obtained with each gene individually (Table 3). MP analysis of the separate *rbcL*, *atpB*, 18S rDNA, and 26S rDNA data sets generated 110, 941, 756, and 10

shortest trees, respectively. However, the four-gene data set generated only three most parsimonious trees, each of 10910 steps (CI = 0.36, RI = 0.43). The only differences among the three most parsimonious trees involved the relationships among five genera of Ranunculaceae and among three genera of Papaveraceae (Fig. 4). Bootstrap support was generally higher with four genes than with individual genes (Table 4), in agreement with other comparisons involving the combination of data sets (e.g., Savolainen et al., 2000; Soltis et al., 2000).

In the MP analysis of the four-gene data set, a well-supported (99%) Ranunculales are sister to all other eudicots. Following Ranunculales, the shortest trees placed a weakly supported (65%) Proteales clade as sister to the rest of the eudicots (59%). Within Proteales, Nelumbonaceae are sister to a clade (67%)

Fig. 4. One of three most parsimonious trees based on the combination of *atpB*, *rbcL*, 18S rDNA, and 26S rDNA sequences. Numbers along branches, dotted lines, and bold lines are as in Fig. 2. Abbreviations for several genera are as follows: *Jep., Jepsonia; Boy., Boykinia; Fra., Fragaria; Ker., Kerria; Lam., Lambertia; Pla., Placospermun.*

Table 4			
Comparison of bootstrap support for major groups sensu	APG II classification (2002) in separate	and combined analyse

Clades	rbcL	atpB	18S rDNA	26S rDNA	Chloroplast	Nuclear	Three	Four
							gene	gene
Eudicots	99	88	_	88	100	95	100	100
Buxaceae	90	76	_	89	99	96	100	100
Sabiaceae	92	72	_	100	99	100	99	100
Trochodendraceae	100	99	94	100	100	77	100	100
Proteales		62	_	_	84	_	86	65
Proteaceae		98	_	_	93	_	88	67
Ranunculales	87	51	_	53	98	68	99	99
Berberidaceae		100	90	99	100	100	100	100
Circaeasteraceae	100	99	98	99	100	100	100	100
Lardizabalaceae	97	100	91	98	100	100	100	100
Menispermaceae	100	100	72	100	100	100	100	100
Papaveraceae	82	83	76	79	100	93	100	100
Ranunculaceae	90	_	_	_	80	55	91	87
Core eudicots	61	100	_	_	100	53	100	100
Ranunculaceae	_	82	_	_	92	_	89	79
+ Berberidaceae								
Ranunculaceae		64	_	_	66	_	76	81
+ Berberidaceae								
+ Menispermaceae								
Eupteleaceae sister to			_	54	_	70	_	70
other Ranunculales								
Papaveraceae sister to	70		_	_	70	_	_	
other Ranunculales								
Ranunculales sister to	_	58	_	_	80	_	70	_
other eudicots								

Note. Dashes indicate bootstrap values <50%.

support) of Proteaceae + Platanaceae. The low support for the monophyly of Proteales (65%) appears to be the effect of 26S rDNA data, which place Platanaceae as sister to Nelumbonaceae + Proteaceae rather than Nelumbonaceae as sister to Proteaceae + Platanaceae. The monophyly of Proteales was supported by 84 and 86% bootstrap values in analyses of the chloroplast and *rbcL atpB*/18S rDNA partitions, respectively. Following Proteales, the relationships of the remaining early-diverging eudicots remain uncertain. In the strict consensus tree, Trochodendraceae are sister to a clade of Sabiaceae + Buxaceae s. 1. (Buxaceae + Didymelaceae; see APG II, 2003), but none of these relationships receives support >50%.

Within Ranunculales, relationships are generally well resolved and strongly supported with four genes. Eupteleaceae, followed by Papaveraceae, appear as successive sisters to all other Ranunculales, with bootstrap support of 70 and 78%, respectively. In contrast, the earlier three-gene analyses (Hoot et al., 1999; Soltis et al., 2000), as well as our own three-gene study, placed Papaveraceae followed by Eupteleaceae as sister to other members of Ranunculales. However, support for Papaveraceae as sister to Eupteleaceae + the rest of Ranunculales with three genes was lower (Hoot et al., 1999: <50%; Soltis et al., 2000: 53%) than the placement here of Eupteleaceae as sister to Papaveraceae + rest of Ranunculales (70%).

Following Eupteleaceae and Papaveraceae, Lardizabalaceae + Circaeasteraceae are weakly supported sisters (53%) and are sister to a clade (81%) of Menispermaceae + (Berberidaceae + Ranunculaceae) (79%). These relationships are very similar to those revealed with three genes (Fig. 3B).

The ML tree from the four-gene analysis is very similar to those obtained with maximum parsimony (Fig. 5). Ranunculales are again sister to other eudicots and are followed successively by Proteales, Sabiaceae, Buxaceae, and Trochodendraceae. However, the branch lengths of these clades are very short, in agreement with the poor resolution and support obtained with parsimony.

The Bayesian analysis revealed the same topology as ML for early-diverging eudicots; relationships among core eudicots and among outgroups differed between the analyses, however (Fig. 6). Most of relationships among early-diverging eudicots received a posterior probability of 1.00, including the following: the sister group relationship of Ranunculales to all other eudicots, most of relationships among Ranunculales including basal-most position of *Euptelea* in the order, and relationships among Proteales, Trochodendraceae, Buxaceae, and Sabiaceae (Fig. 6).

Fig. 5. Maximum likelihood tree generated from analysis of four-gene data set.

3.4. Character evolution

Most basal angiosperm lineages are woody, with the notable exceptions of Nymphaeaceae, some Piperales, and some Chloranthaceae (Cronquist, 1981; Doyle and Endress, 2000; reviewed in Zanis et al., 2003). In contrast, however, most Ranunculales are herbaceous. Ranunculales were long considered to be derived from Magnoliales and "primitively herbaceous" (Cronquist, 1968, 1988; Takhtajan, 1991, 1997). To evaluate the hypothesis of an ancestrally herbaceous habit for Ranunculales, we optimized habit, coded as woody vs. herbaceous.

Our reconstructions indicate that the ancestral state for several of major clades of eudicots is most likely woody. For example, the first-branching Saxifragales include *Daphniphyllum*, *Cercidiphyllum*, and Altingiaceae, all of which are woody; hence, the ancestral state reconstructed for this clade is clearly woody (Fishbein, in preparation). Similarly, Cornales followed by Ericales, both of which are woody, appear as sister to all other asterids (Albach et al., 2001; Bremer et al., 2002); the ancestral state for this large clade is reconstructed as woody. Dilleniaceae, which are sister to Caryophyllales, are woody as are the first-branching members of Caryophyllales, so this clade also appears to be ancestrally woody (Fig. 7). The ancestral state for the rosids is unclear. Within the rosids, Vitaceae (which are woody) are sister to all other rosids, but relationships among the

Fig. 6. Bayesian tree generated from analysis of four-gene data set. Posterior probability multiplied by 100.

remaining rosids are uncertain; thus, the rosids are scored as polymorphic.

Using the results of our four-gene analysis and the composite topologies we constructed for angiosperms (see Materials and methods), the woody habit is inferred to be ancestral not only for basal angiosperms, but also for several major clades of eudicots (Fig. 7). Furthermore, Ranunculales may not be ancestrally herbaceous, as long maintained. The ancestral condition for Ranunculales (and for the eudicots) depends on the relationships within Ranunculales and on the optimization assumptions that have been used. Using the three-gene topology (Hoot et al., 1999; Soltis et al., 2000), Papaveraceae are sister to the remainder of Ranunculales. With this topology, some character codings and the all most parsimonious states optimiza-

tion, the ancestral state for Ranunculales is variously reconstructed as woody or ambiguous (Fig. 7). However, in our four-gene topology, Eupteleaceae are sister to all other Ranunculales (Figs. 4 and 5), and this placement has an important impact on character-state reconstruction for Ranunculales. With Eupteleaceae sister to all other Ranunculales, the ancestral condition for the order is always woody using all three optimizations (ACCTRAN, DELTRAN, and "all most parsimonious states"). Regardless of the topology for Ranunculales (and placement of Eupteleaceae and Papaveraceae), the ancestral state for the remaining eudicots is also the woody habit. The use of different topologies and character codings for various members of Ranunculales for core eudicots had no impact on this reconstruction.

Fig. 7. MacClade reconstruction of the evolution of plant habit using the all most parsimonious states option. Lam.-Pla. = Lambertia-Placospermum.

Acknowledgments

This research was supported by the Post-doctoral Fellowship Program of the Korea Science and Engineering Foundation to S. Kim, a Fulbright grant to DES and PSS, and NSF grant DEB-9707868 to P.S. Soltis and D.E. Soltis, and a grant (PF001102-0) from Plant Diversity Research Center of 21st Century Frontier Research Program funded by Ministry of Science and Technology of Korean government to Y. Suh. We thank three anonymous reviewers for helpful comments on the manuscript.

References

- Albach, D.C., Soltis, P.S., Soltis, D.E., Olmstead, R.G., 2001. Phylogenetic analysis of asterids based on sequences of four genes. Ann. Mo. Bot. Gard. 88, 163–212.
- Albert, V.A., Gustafsson, M.H.G., DiLaurenzio, L., 1998. Ontogenetic systematics, molecular developmental genetics, and the angiosperm petal. In: Soltis, D.E., Soltis, P.S., Doyle, J.J. (Eds.), Molecular Systematics of Plants II. Kluwer, New York, pp. 349–374.
- APG, 1998. An ordinal classification for the families of flowering plants. Ann. Mo. Bot. Gard. 85, 531–553.
- APG II, 2003. An updated classification of the angiosperms. Bot. J. Linn. Soc. 141, 399–436.
- Bremer, B., Bremer, K., Heidari, N., Erixon, P., Olmstead, R.G., Anderberg, A.A., Källersjö, M., Barkhordarian, E., 2002. Phylogenetics of asterids based on 3 coding and 3 non-coding chloroplast DNA markers and the utility of non-coding DNA at higher taxonomic levels. Mol. Phylogenet. Evol. 24, 274–301.
- Chase, M.W., Soltis, D.E., Olmstead, R.G., Morgan, D., Les, D.H., Mishler, B.D., Duvall, M.R., Price, R.A., Hills, H.G., Qiu, Y.-L., Kron, K.A., Rettig, J.H., Conti, E., Palmer, J.D, Manhart, J.R., Sytsma, K.J., Michael, H.J., Kress, W.J., Karol, K.G., Clark, W.D.,

Hedrén, M., Gaut, B.S., Jansen, R.K., Kim, K.-J., Wimpee, C.F., Smith, J.F., Furnier, G.R., Strauss, S.H., Xiang, Q.Y., Plunkett, G.M., Soltis, P.S., Swensen, S.M., Williams, S.E., Gadek, P.A., Quinn, C.J., Eguiarte, L.E., Golenberg, E., Learn Jr., G.H., Graham, S.W., Barrett, S.C.H., Dayanandan, S., Albert, V.A., 1993. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene *rbcL*. Ann. Mo. Bot. Gard. 80, 528–580.

- Chaw, S.-M., Zharkikh, A., Sung, H.-M., Lau, T.-C., Li, W.-H., 1997. Molecular phylogeny of gymnosperms and seed plant evolution: analysis of 18S rRNA sequences. J. Mol. Evol. 14, 56–68.
- Cronquist, A., 1968. The Evolution and Classification of Flowering Plants. Houghton Mifflin Company, Boston.
- Cronquist, A., 1981. An Integrated System of Classification of Flowering Plants. Columbia University Press, New York.
- Cronquist, A., 1988. The Evolution and Classification of Flowering Plants, second ed. New York Botanical Garden, Bronx.
- Cunningham, C.W., 1997. Can three incongruence tests predict when data should be combined? Mol. Biol. Evol. 14, 733–740.
- Donoghue, M.J., Doyle, J.A., 1989. Phylogenetic analysis of angiosperms and the relationships of Hamamelidae. In: Crane, P.R., Blackmore, S. (Eds.), Evolution, Systematics, and Fossil History of the Hamamelidae, vol. 1, Introduction and "Lower" Hamamelidae, Syst. Assoc. special vol. 40A, Clarendon Press, Oxford, pp. 17–45.
- Doyle, J.A., Donoghue, M.J., Zimmer, E.A., 1994. Integration of morphological and ribosomal RNA data on the origin of angiosperms. Ann. Mo. Bot. Gard. 81, 378–380.
- Doyle, J.A., Endress, P.K., 2000. Morphological phylogenetic analysis of basal angiosperms: comparison and combination with molecular data. Int. J. Plant Sci. 161 (Suppl.), S121–S153.
- Drinnan, A.N., Crane, P.R., Hoot, S.B., 1994. Patterns of floral evolution in the early diversification of non-magnoliid dicotyledons (eudicots). Plant Syst. Evol. Supp. 8, 93–122.
- Fan, C., Xiang, Q.-Y., 2001. Phylogenetic relationships within *Cornus* (Cornaceae) based on 26S rDNA sequences. Am. J. Bot. 88, 1131– 1138.
- Farris, J.S., Källersjö, M., Kluge, A.G., Bult, C., 1995. Testing significance of incongruence. Cladistics 10, 315–319.
- Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.

- Fishbein, M., Hibsch-Jetter, C., Soltis, D.E., Hufford, L., 2001. Phylogeny of Saxifragales (Angiosperms, Eudicots): analysis of a rapid, ancient radiation. Syst. Biol. 50, 817–847.
- Friis, E.M., Pedersen, K.R., Crane, P.R., 2001. Fossil evidence of water lilies (Nymphaeales) in the early Cretaceous. Nature 410, 357–360.
- Hamby, K.R., Zimmer, E.A., 1992. Ribosomal RNA as a phylogenetic tool in plant systematics. In: Soltis, P.S., Soltis, D.E., Doyle, J.J. (Eds.), Molecular Systematics of Plants. Chapman & Hall, New York, pp. 50–91.
- Hilu, K.W., Borsch, T., Müller, K., Soltis, D.E., Soltis, P.S., Savolainen, V., Chase, M.W., Powell, M., Alice L.A., Evans, R., Sauquet, H., Neinhuis, C., Slotta, T.A., Rohwer J.G., Campbell, C.S., Chatrou, L., in press. Angiosperm phylogeny based on *matK* sequence information. Am. J. Bot.
- Hoot, S.B., Magallon, S., Crane, P.R., 1999. Phylogeny of basal eudicots based on three molecular datasets: *atpB*, *rbcL*, and 18S nuclear ribosomal DNA sequences. Ann. Mo. Bot. Gard. 86, 1–32.
- Huelsenbeck, J.P., 2000. MrBayes, Department of Biology, University of Rochester, Rochester (Distributed by the author).
- Kim, S., Albert, V.A., Yoo, M.-J., Farris, J.S., Soltis, P.S., Soltis, D.E., submitted. Pre-angiosperm duplication of floral genes and regulatory tinkering at the base of flowering plants. Plant Cell.
- Kuzoff, R.K., Sweere, J.A., Soltis, D.E., Soltis, P.S., Zimmer, E.A., 1998. The phylogenetic potential of entire 26S rDNA sequences in plants. Mol. Biol. Evol. 15, 251–263.
- Mabberley, D.J., 1987. The Plant Book. Cambridge University Press, Cambridge.
- Maddison, W.P., Maddison, D.R., 1992. MacClade: Analysis of Phylogeny and Character Evolution. Sinauer, Sunderland.
- Magallón, S., Crane, P.R., Herendeen, P.S., 1999. Phylogenetic pattern, diversity, and diversification of eudicots. Ann. Mo. Bot. Gard. 86, 297–372.
- Posada, D., Crandall, K.A., 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818.
- Savolainen, V., Chase, M.W., Hoot, S.B., Morton, C.M., Soltis, D.E., Bayer, C., Fay, M.F., de Bruijn, A.Y., Sullivan, S., Qiu, Y.-L., 2000. Phylogenetics of flowering plants based on combined analysis of plastid *atpB* and *rbcL* gene sequences. Syst. Bot. 49, 306–362.
- Soltis, D.E., Senters, A.E., Kim, S., Thompson, J.D., Soltis, P.S., Zanis, M.J., de Craene, L.R., Endress, P.K., Farris, J.S., 2003.

Gunnerales are sister to other core eudicots and exhibit floral features of early-diverging eudicots. Am. J. Bot. 90, 461–470.

- Soltis, D.E., Soltis, P.S., Nickrent, D.L., Johnson, L.A., Hahn, W.J., Hoot, S.B., Sweere, J.A., Kuzoff, R.K., Kron, K.A., Chase, M.W., Swensen, S.M., Zimmer, E.A., Chaw, S.-M., Gillespie, L.J., Kress, W.J., Sytsma, K.J., 1997. Angiosperm phylogeny inferred from 18S ribosomal DNA sequences. Ann. Mo. Bot. Gard. 84, 1–49.
- Soltis, D.E., Soltis, P.S., Chase, M.W, Mort, M.E., Albach, D.C., Zanis, M., Savolainen, V., Hahn, W.H, Hoot, S.B., Fay, M.F, Axtell, M., Swensen, S.M., Nixon, K.C, Farris, J.S., 2000. Angiosperm phylogeny inferred from a combined data set of 18S rDNA, *rbcL* and *atpB* sequences. Bot. J. Linn. Soc. 133, 381–461.
- Soltis, P.S., Soltis, D.E., 1998. Molecular evolution of 18S rDNA in angiosperms: implications for character weighting in phylogenetic analysis. In: Soltis, D.E., Soltis, P.S., Doyle, J.J. (Eds.), Molecular systematics of Plants II—DNA Sequencing. Kluwer, Norwell, pp. 188–210.
- Soltis, P.S., Soltis, D.E., Chase, M.W., 1999. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402, 402–404.
- Sullivian, J., 1996. Combining data with different distributions of among-site rate variation. Syst. Biol. 45, 375–380.
- Sun, G., Ji, Q., Dilcher, D., Zheng, S., Nixon, C.N., Wang, X., 2002. Archaefructaceae, a new basal angiosperm family. Science 296, 899–904.
- Swofford, D.L., 1998. PAUP*: Phylogenetic Analysis Using Parsimony, ver. 4.0. Sinauer, Sunderland.
- Takhtajan, A., 1991. Evolutionary Trends in Flowering Plants. Columbia University Press, New York.
- Takhtajan, A., 1997. Diversity and Classification of Flowering Plants. Columbia University Press, New York.
- Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., 1997. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acid Res. 25, 4876–4882.
- Zanis, M.J., Soltis, D.E., Soltis, P.S., Mathews, S., Donoghue, M.J., 2002. The root of the angiosperms revisited. Proc. Natl. Acad. Sci. USA 99, 6848–6853.
- Zanis, M.J., Soltis, D.E., Soltis, P.S., Qiu, Y.-L., Zimmer, E., 2003. Phylogenetic analyses and perianth evolution in basal angiosperms. Ann. Mo. Bot. Gard. 90, 129–150.